Residential Home Upgrades in California

Torsten Glidden

Sr. Technical Manager Energy Upgrade California[®] Home Upgrade Build It Green tglidden@builditgreen.org

> AESP Webinar Dec 2016

Presentation Outline

- Introduction
- Home Upgrade Program
 Issues, Process & Solutions
- Home Upgrade Program Accelerator Metrics & Results
- Timeline
- Goals

Introduction

Build It is a non-profit green building standards development, training and program implementation services organization.

Introduction

Southern California Gas Company (SoCal Gas).

Introduction

The Home Upgrade Program (HUP) participation consists of:

150 Participating Contractors

•3,000 – 5,000 Upgrade Project Rebates Issued Annually

Program pathways

Home Upgrade pathway is prescriptive measures based
Advanced Home Upgrade pathway requires energy modeling (Pre- and Post-Installation)

Home Upgrade Program Issues

- Program is **complicated** and requires ongoing training and mentoring
- Initially, the Advanced program had only one approved energy modeling software tool
- Program requires a significant amount of time-consuming data collection and document submission
- Rebate application **process** is lengthy and (initially) **unnecessarily complex**
- Job-submission staff turnover can cause delays during 'learning-curve'
- Modeled energy savings is not as accurate as desired

Home Upgrade Program Issues

Biggest initial pain-point:

• Rebate application process is lengthy and (initially) unnecessarily complex

Home Upgrade Program Issues

Process advantages for 'Semi-Custom' portal/database solutions:

• Off-the-shelf solution to launch Program

Process drawbacks for 'Semi-Custom' portal/database solutions:

- Difficult to update features without significant impacts on users
- Difficult to track application documentation updates (good notes required!)
- Design included significant amount of manual aggregation of data in order to move to next step in process
- Reporting capabilities were not as flexible as needed
- More steps = More potential for data errors in transfer

Process advantages for fully 'Custom' integrated portal/database solutions:

- Regular, flexible feature updates built on stable, standardized platform (Salesforce) minimize impacts on users and increases efficiency
- Iterative application documentation tracking (good notes still recommended!)
- Automated data aggregation speeds move to next step in process significantly
- Reporting capabilities are as flexible as needed (design for standardization of data where possible)
- Fewer steps = Limited potential for data errors in transfer

Process drawbacks for fully 'Custom' portal/database solutions:

Initial Cost

Home Upgrade Program Solutions

Addressing other Pain-Points:

- Reduce unnecessary and/or manual data entry and documentation
 - Parse data and 'auto-populate' from transparent, standardized energy modeling output (HPXML)
 - Online, dynamic, database-integrated 'test-measurements' form to minimize manual data transfer and user-error
 - Choice of 'less-detailed' software options

These solutions can increase efficiency and save time/money, but might they help reduce staff turnover as well?

Home Upgrade

HPXML Standard/Structure Maintained by DOE (NREL)

HPXML Structure Based on BPI & DOE Standards

BPI

Building Performance Institute, Inc. BPI Standards

Building Performance Institute, Inc. BPI Standard

ANSI/BPI-2400-S-2012 Standard Practice for Sta

Standard Practice for Standardized Qualification of Whole-House Energy Savings Predictions by Calibration to Energy Use History

Building Performance Institute, Inc. BPI Standard

BPI-2100-S-2013 Standard for Home Performance-Related Data Transfer v2.1.0 BPI-2200-S-2013 Standard for Home Performance-Related Data Collection v2.1.0

Test Measurements Form

Occupant Name	Analyst informa	tion	Occupa	int Email						
17				P	rimary Phone					1
Job Address					Jty		7	Zipcode		
BPI Analyst		BPI ID#		1	est-In/Test-O	ut	•	Test Date		
Building Inflitration						Diag	nostic li	nspection	& Te	sting
CFM 50 Condition Area	s (sq ft) S	tories (abo	we grade	Avg	Ceiling (ft)	LBL N Fa	ctor	ASHRAE (p	10	
Duct Systems and Leakage										
CFM25 Number of Sys	terns System	ns Avg CR	M 25 (yo'n)	CFM25 T	est Method					
Asbestos (y/n) 📄 System Fan Flor	w Type (for leakage 9	6 calc)			· Actual S	ystem Fan F	low-if me	easured (cfm)		
Whole House Combustion Gas	Testing					CA	s/cazi	nspection	& Te	stin
CO Monitor(s) Installed		•		Stove	ove Oven		Broller Other p		ther _{ps}	dincite)
Gas Line Testing (p/f)	As Measured CO (ppm)		ppm)	-						
Whole House CO (ppm)	Ambient	CO (ppr	n [1			
Combustion Appliance Zone (AZ) identificatio	n, Comb	ustion V	entilation /	Air (CVA) and	CAZ Pres	sure Test	ting		
Appliance/Equipment Location (visi	ual)							-		
Baseline Pressure (pa) Worst Case (pa)	1	76	Î.		1			1	
Net Pressure Difference (pa) CVA (p	0.0	1	Ī			Πı	-		1	•
Appliance/Equipment Informa	ition, Gas Line in	AZ and	Venting	i.						
Appliance/Equipment Type (visual)										
Heating in or Out (kBTU) Cooling (t	ions)	1		1		1			1	
Combustion Gas Flue Type (visual)			•						_	
CAZ Gas Line Test (p/f) Flue Config	(p/f)	1		1		1			1	
Worst Case CAS Testing		- 27	incom.	220.00	AMERICA.			1.00		
Spillage (at worst case)			3				•	i		
AirFree Flue CO (ppm) CAZ Amblent CO) (ppm)	I.		1		11			1	

Energy Upgrade California® Home Upgrade - Test Measurements Form Combustion appliance safety failure or other unsafe natural gas conditions? Contact the local gas utility service provider: PG&E Gas Service Representatives (GSR): SoCalGasti 800-813-1975 (business hours) 800-743-5000 (after 5:30pm/weekends) 8054273280 Test dato * Test type * Q Test In C Test Cast GSR call required (P. Yes.) (NGAT tail? * @ No Cutcomes + All tests completed © Some tests not completed due to presumed asbestos-containing material (FACM) Diagnostic Inspection & Testing Building Infiltration CFM50+ Conditioned altioned Alg. ceiling Stories Decupants. area tr2 beight 1 #storie granti # Ventilation rd = 0 (KSHRAE 522,2010) Total Resourced 0 ASHRAE 522,2013 Wintilation Rate (see (15)) 0 ASHRAE 522,2016 online cool = ASHRAE Standard = 0 ASHRAE 62.2 2010 Ventilation * cm 10 Other Space Conditioning Systems Please enter test information for each space conditioning system separately. Duried system? III Yes Area server 100 Space @ Nominal Heating conditioning @ Nominal Epoling system type * @ Actual System Fan Flow (Measured Return) + Add another space conditioning system Combustion Appliance Safety (CAS) Inspection & Testing Kitchen Ambient CO * Stove type * 0. Bectric 0.5.0 Oven type + @ Electric 0 Gas Broller type + @ Electric 0 Gat Other Kitchen Appliance Appilance Name As-misasured CO + Add another kitchen appliance Heating/Cooling (Combustion Appliance) Zone Zone name/location * SElectric only Ambient CO * Appliance Typo+ Please select * - Add another appliance in this zone + Add another combussion appliance zone Cancel Submit

At-a-Glance Software Comparison Guide

Home Upgrade

Energy Upgrade California®

Home Upgrade Program Solutions

Addressing other Pain-Points:

- Increase energy-modeling accuracy for better Program energy savings and satisfaction
 - Launch mechanism for comparison of energy-modeled predictive savings results with pre- and post-installation customer bill data (CalTRACK)
 - Provide realization-rate feedback to energy modeling software vendors to improve tools
 - Provide realization-rate feedback to contractors to target areas that need improvement with more specific training and mentoring (potentially introduce 'contractor scores')

Is the Program Delivering Savings?

CalTRACK: Delivery of Predicted Savings

Savings

California Data-Driven Tracking and Analysis

- Upgrade projects tracked by software version used
- Savings predictions compared to weather normalized post retrofit billing data
- If inaccuracies identified at the software level, vendor can revise software or an adjustment factor can be applied to reconcile future model predictions

CalTRACK: Contractor Feedback

Avg. Gas Realization Rate (2010-2012 Data): 34%

Home Upgrade Program Accelerator Metrics

- 1. Reduce administrative time to review rebate applications by 25% (per project)
- 2. Expand contractor choice of energy modeling software tools
- 3. Reduce the reporting burden on contractors by 25% (per project)
- 4. Improve contractors' satisfaction in the program by 20% (based on surveys)
- 5. Benchmark predictive accuracy of modeled energy savings and reduce average difference between predicted and actual savings by 10%

Home Upgrade Program Accelerator Results

- 1. Reduced administrative time to review rebate applications by 48%
- 2. Expanded contractor choice of energy modeling software tools to 3
- 3. Reduced the reporting burden on contractors by 27% in avg. application submission time and 20% in avg. energy modeling time
- 4. Improved contractors' satisfaction in the program by 28%
- 5. Benchmarking of predictive accuracy of modeled energy savings is **in progress**; reducing average difference between predicted and actual savings by 10% is next (upon completion of benchmarking)

HUP Improvements Timeline - 2015

HUP Improvements Timeline - 2016

Long-Term Goal: Market Transformation

Indirect benefits that HUP improvements can facilitate:

- Driving demand/quantifying value of energy efficiency work
 - ✓ Home Energy Score via HPXML
 - ✓ Bringing green building data to the MLS via HPXML
- Designing better, more cost-effective programs
 - ✓ Less risk (greater predictability) for investors
 - ✓ Better environment for private capital and industry investment
 - Standardized (HPXML) data sharing and comparative analysis between other states, organizations and industries

Questions and Comments

Contact:

Torsten Glidden tglidden@builditgreen.org 510-590-3360 x125

Thank You

